

三次元積層造形法の歯科応用 イタリアDWS社の光造形装置の例を中心に

2015年7月11日 東京工業大学大学院理工学研究科 産官学連携研究員 東北大学大学院医工学研究科 非常勤講師

萩原恒夫

E-mail: hagi@hino.email.ne.jp

http://www.thagiwara.jp

目次

- 背景
- 光造形の意義
- Digital Dentistry
- DWSの紹介
 - -経緯
 - 歯科応用
- IDS2015ケルンの紹介
- 今後の展開

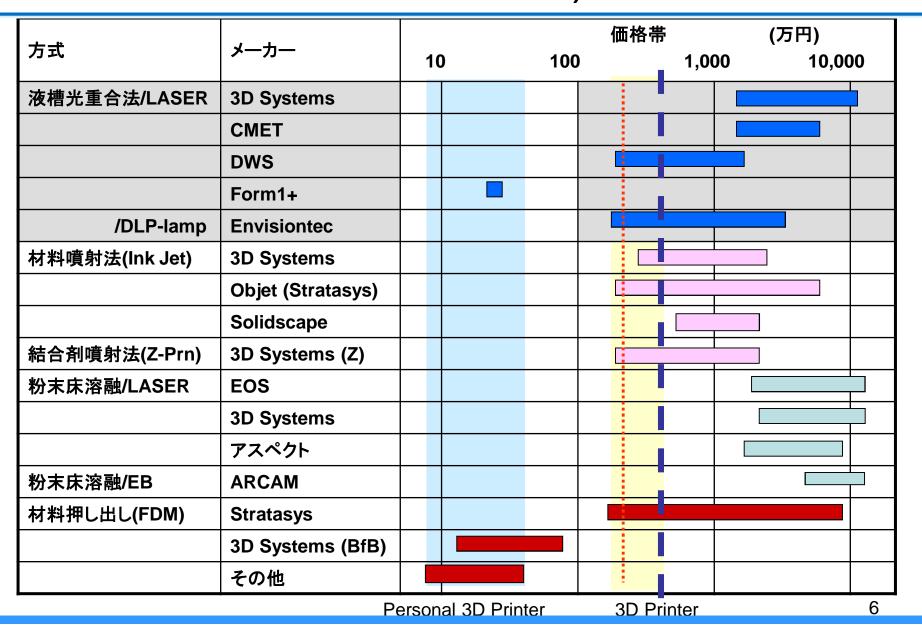
でパップを 背景: 今、なぜ 3D Printer なのか?

- 三次元積層造形(Additive Manufacturing =AM) → 3D Printer
- 高性能PC/グラフィック環境の成熟
- 3D CADシステムの低価格化と普及 3次元データが比較的簡単に生成できるようになった。
- 三次元積層造形(RP=AM)の経験の蓄積, 技術の大衆化
- Rapid Manufacturingの台頭
- 各種RP(AM)装置の基本特許切れ多くが1980年後半に発明され、20年以上が経過
- FDM方式のオープンソース化→ 大学発ベンチャー機の大量進出; RepRap, BfB, Makerbotなどの成功
- 生活の質の向上と物作りへの欲求の増大
- クリス・アンダーソン "Makers"ブーム
- 米国オバマ大統領の2013.02の一般教書演説における3D Printerへの言及 2013年の世界的な3D Printerへの期待
- 過剰な反応は収まりつつあるが、依然大きな期待が続いている。
 - →装置の低廉化とともに材料の開発要
 - →簡易なデータ作成ツール要

データから立体形状へ

機械加工法	操作	自由度	大量生産	単品 製作	加工の具体例
除去加工(切削)	_	0		0	旋盤、マシニングセンター、研削 放電加工、フライス盤 等々
付加加工	+	0		0	溶接、ろう(ハンダ・銀ろう)付け、三次元積層造形(AM)
成形加工(塑性)	+ -	Δ	0		射出成形 鍛造・圧延・せん断 プレス・曲げ・絞り

(一: のぞく、十: 加える)


各種3次元積層造形(AM)法

造形法	材料	刺激	
液槽光重合法 (光造形法, SLA)	液状感光樹脂	UVレーザー UVランプ	走査ミラー レーザー ビーム N2 ガス雰囲気 C02 Lーザー
粉末床溶融結合 法;PBF (SLS/SLM)	ナイロン 金属粉末	CO2レーザー 電子線	光造形/SLA
結合剤噴射法 (Z方式)	石膏粉末	水系バインダー	タ末カートリッジ ピストン 粉末カートリッジ SLS/SLM
材料噴射法 (Objet法)	光硬化性樹脂	UVランプ	Z-Printer 樹脂
材料押出法 (樹脂溶融押出し, FDM)	ABSワイヤー等	熱溶融•押出	インクジェットヘッド X軸 モデル
指向エネルギー 堆積法(LENS)、 LOM法 等	金属粉末 紙 など	CO2レーザー ナイフなど	モデル材 UV光 Z軸 造形テーブル FDM

AM装置(3D Printer)の価格帯

2015.05

AM装置(3DPrinter)の材料例

2015.05

方式	*************************************		→ Ⅲ ⅍	
	装置メーカー 	カテゴリー	具体例	主用途
光造形/LASER	3D Systems	光硬化性樹脂	エポキシ/アクリレートハイブリッド	試作分野
	CMET	光硬化性樹脂	エポキシ/アクリレートハイブリッド	試作分野
	DWS	光硬化性樹脂	アクリレート系	宝飾、歯科
	Form1	光硬化性樹脂	アクリレート系	ホビー
光造形/DLP-lamp	Envisiontec	光硬化性樹脂	アクリレート系	宝飾、歯科
	ASIGA	光硬化性樹脂	アクリレート系	宝飾、歯科
材料噴射(Ink Jet)	3D Systems	光硬化性樹脂	アクリレート系/ワックス	宝飾•歯科
	Objet (Stratasys)	光硬化性樹脂	アクリレート系	形状確認・歯科
	3D Systems (Z)	石膏	石膏/水	デザイン・フィギュア
	Solidscape	ワックス	ワックス+バインダー樹脂(Polyester)	宝飾
粉末床溶融/LASER	EOS	ナイロン、金属粉	PA12, SUS, Ti, Al, Co-Cr	試作、生産、歯科
	3D Systems	ナイロン、金属粉	PA12, SUS, Ti, Al, , Co-Cr	試作、生産
	アスペクト	ナイロン、PP	PA12, PP	試作
粉末床溶融/EB	ARCAM	金属粉	Ti (合金)	医療(インプラント)
材料押出し(FDM)	Stratasys	熱可塑性樹脂	ABS, PC, PEI, PPSF etc	試作、形状確認
	3D Systems	熱可塑性樹脂	ABS, PLA	形状確認、ホビー
	RepRap他	熱可塑性樹脂	ABS, PLA	ホビー 7

AM技術の用途

• 従来の用途

- 意匠評価・機能評価・組付テスト
- 試作
- 鋳型製作
- 小ロット製品(航空機部品)

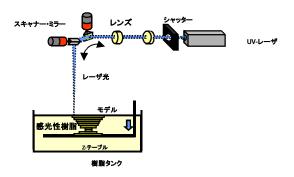
- 医療・歯科
- 特殊金型(水管付)
- 製品•部品
- 宝飾
- デザインやアミューズメント

医療・歯科への展開

人体の各種パーツは個人差が大きいため、個別の寸法に対応できる3Dプリンタが最適

医療・歯科分野における3Dプリンタの活用例。

- 1. 3Dプリンタで印刷された顎の骨(チタンまたはチタン合金)をインプラントに使用
- 2. 人工骨 コンピュータ断層撮影装置(CT)や磁気共鳴画像装置(MRI)の3Dデータを、3D プリンタに取り込むことで作成
- 3. 手術前の手順検討
- 4. 人体モデル(胎内児モデル)
- 5. オーダーメイド補聴器
- 6. 身体の動きをサポートする補助具
- 7. 義手や義足
- 8. 再生医療、足場(PLA)、iPS細胞利用 Bioplotter
- 9. 歯科向け: 口腔内スキャナーが身近に
 - 矯正歯科、鋳造、石膏代替歯形、仮歯、人工歯など



光造形とその特徴

- 最初に発明された積層造形(小玉秀男氏; 1981年名古屋)
- 液状光硬化性樹脂をLASER等で硬化 積層
- 比較的大型の造形物が可能
- 透明の造形物が得られる
- 高精度・高精細な造形物が得られる。
- 日本の「ものづくり」に最適

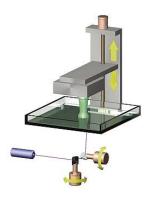
高精細・高精度が生きる光造形

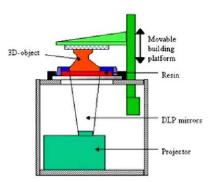
- 高精度•高精細用途
 - 1. 矯正歯科
 - 2. サージカルガイド
 - 3. 歯科鋳造
 - 4. 人工歯(仮歯)

5. 補聴器

ProX950/3D Systems

感光性樹脂


樹脂タンク



DWS 029D

Envisiontec /Perfactory

光造形法の歯科での既存成功例

Invisalign®

Digital Dentistry

Analogue Dentistry: 従来のハンドメイド

知識と技能で差が出る。品質管理の難しさ、安定的な供給ができない.

Digital Dentistry: コンヒュータ支援による歯科治療

疾病構造の変化や患者の高齢化、

多様な要求に対応

新素材の開発や技術革新が行われ安全·安心な歯科医療を国 民に 提供

歯科医師サイト: 診査・診断の確定,手術支援, 治療効果の予測と評価,患者とのコミュニケーションの 円滑化

歯科技工士サイト:歯科技工物の生産性の向上,作業環境の改善,情報伝達,構造設計に対する評価

末瀬ら: 日補綴会誌 Ann Jpn Prosthodont Soc 4 : 121-122, 2012

口腔内スキャナーが身近に

GC/IDS2015にて

3shape TRIOS

3M ESPE

イタリア・DWS社

- 2007年イタリア Vicenzaに設立
 - Vicenza: 古くから宝飾品の生産地
- 当初:宝飾用途に特化一歯科、一般用途に拡大
- 高精度・高精細が可能な 小型光造形機に特化
- 従業員:30名
- 総販売数約1,000台(2014末)

DWS社光造形装置

(規制液面法;下部照射)

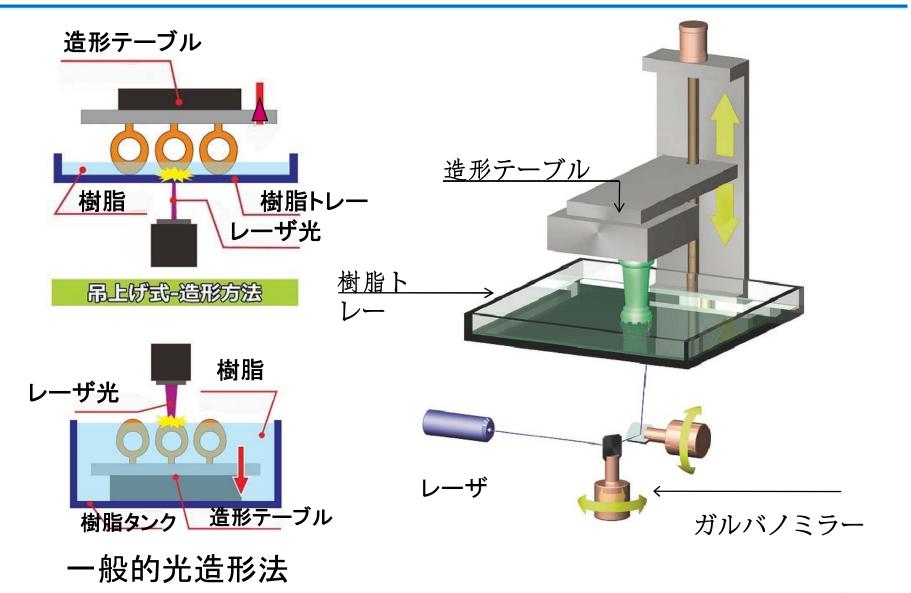
OIGITALWAX

DESD

DIGITALWAX

028J

遊科用


DIGITALWAX

028D

宝飾用

DWS 装置構成例

17

TOKYPITETH DWS社の光硬化性樹脂材料

- 宝飾用途
 - 直接鋳造(ロストワックス代替)
 - -ゴム型
 - Digital Stone (宝石様樹脂)
- 歯科用途
 - 鋳造
 - 人工歯(TEMPOLIS: 仮歯)
- モデル用
 - RP、工業デザイン
 - フィギュアー

TWINDERD DWS社の光造形物の特徴

- 優れた造形物精度・高精細
- 非常に滑らかな造形物表面
- 優れた鋳造品品位
- 鋳造製品の仕上げの低減・不要
- 最終製品製造に不可欠

宝飾から歯科へ

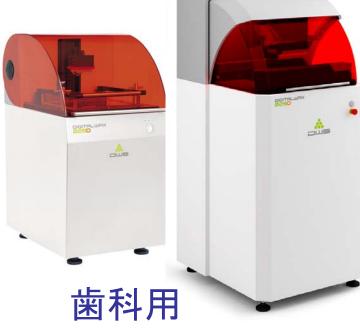
- 宝飾用途と歯科用途に共通点が多い
 - 造形サイズがほぼ同じ
 - 精度・高精細が同レベル
- 規制液面法: 酸素の影響が小
 - 消失モデルに好適な化合物の使用が可能
- 宝飾用と歯科用で共通の材料が使用可能

DWS社光造形装置

(規制液面法;下部照射)

DIGITALWAX

DESD



028J

OIGITALWAX

028D

宝飾用

© Isuneo HAGIWAKA

Feb. 26, 2014@Numazu

歯科への応用例

RF 065, RF 068, RF 080
Partials, crowns and bridges

RD 095, RD 096
Digital impression models

DS 2000 3D Medical

DS 3000 Surgical guides

Temporis:
Long term provisionals

RFシリーズ/鋳造

DS シリーズ

DS 2000:

透明モデル; 医療用途

DS 3000:

サージカルガイド; 生体適合性

RDシリーズ/印象用

GL4000/歯肉ライク

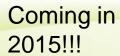
TEMPORIS/人工歯

&

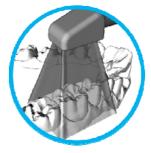
DPRS Process

Digital Provisional Restoration System

TEMPORIS®



dFab™ chairside



Digital Provisional Restoration System®

Intra-oral scanner

CAD/CAM System needed to prepare the .STL file

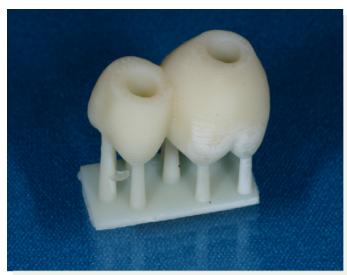
STL file

Choice of the

dfab® process: 20 min

UV Curing time & Polishing operations

Provisional Restoration



TOKY | TECH DWS 社の仮歯の臨床例(イタリア)

Choice of Different Materials

ありがとうございます。

http://www.dwssystems.com http://www.thagiwara.jp http://digitalwax.asia

> 萩原 恒夫(HAGIWARA, Tsuneo) E-mail: hagi@hino.email.ne.jp hagiwara.t.ad@m.titech.ac.jp